Influence de la distribution cationique et de la nature des interactions magnetiques sur l'intensite des transitions de paires de l'ion Fe³⁺ dans quelques spinelles mixtes

M. LENGLET¹ ET M. BIZI

Laboratoire de Physicochimie des Matériaux, INSA de ROUEN, BP N°08, 76131 Mont-Saint-Aignan Cedex, France

ET C. K. JØRGENSEN

Département de Chimie Minérale Analytique et Appliquée, Université de Genève, CH-1211 Genève 4, Suisse

Received September 21, 1989

Optical absorption and diffuse reflectance spectra of iron III (Td in MgGa_{2-x}Fe_xO₄, $x \le 0,2$; Oh in $ZnGa_{2-x}Fe_xO_4$, $x \le 1$) in the range 2500–200 nm are presented. Band assignments and optical parameters are in agreement with the results of recent SCF-X α -SW molecular orbital calculations of (FeO₆⁻) and (FeO_{4}^{5-}) coordination polyhedra. Ferrimagnetic couplings intensify pair excitations: the yellow to brown colors of these mixed oxides result from pair excitations and Fe^{3+} ligand field transitions. © 1990 Academic Press, Inc.

I. Proprietes optiques de l'ion Fe³⁺ en coordination octaedrique

Le spectre de l'ion Fe³⁺ a été étudié intensivement dans les monocristaux (Al₂O₂ et MgO), dans l'hématite et différents silicates comme la nontronite. Enfin Sherman (3-5) a publié une étude très complète des spectres électroniques des oxydes et hydroxydes ferriques et présenté un modèle théorique (méthode SCF-X α -SW) des structures électroniques des clusters suivants (FeO₆)⁹⁻ octaédrique et (FeO₆)⁹⁻ trigonal.

A notre connaissance, les propriétés optiques de l'ion Fe³⁺ en environnement octaédrique dans la structure spinelle n'ont pas été analysées. Nous avons donc entre-

pris l'étude du spectre d'absorption du fer III dans le système $ZnFe_xGa_{2-x}O_4$ (0,05 < x < 1) où la substitution du fer au gallium s'effectue en sites octaédriques, le zinc bloquant les sites tétraédriques.

Le montage de la figure 1 révèle dans le domaine 5-27000 cm⁻¹ guatre transitions fondamentales facilement identifiables (tableaux I et II).

L'ensemble Perkin-Elmer (spectrophotomètre lambda 9 et ordinateur 7300) est muni d'un programme de déconvolution permettant de déterminer la position des différentes composantes d'une bande (la validité de cette méthode de traitement des spectres a été testée en comparant les valeurs calculées des paramètres Dq et B de Cr₂O₃ à partir des spectres traités à l'ordinateur avec les données les plus fiables de la littérature:

¹ To whom correspondence should be addressed. 0022-4596/90 \$3.00

${}^{4}A_{2g} \rightarrow {}^{2}E_{g}$	${}^{2}T_{1g}$	${}^{4}T_{2g}{}^{a}$	${}^{2}T_{2g}$	${}^4T_{1g}{}^a$	$Dq (cm^{-1})$	B (cm ⁻¹)	Ref.
13700	14100	16500	19700	21800	1650	480	Cette étude (spectre traité)
13700	14200	16600	19600	21700	1660	480	(6a)
					1660	480	(6b)

Energie des transitions (cm⁻¹)

^a Position du barycentre.

L'accord obtenu nous a incités à appliquer cette méthode à l'analyse des spectres du fer(III).

Le spectre du composé $ZnFe_{0,2}Ga_{1,8}O_4$ traité à l'ordinateur fait apparaître dans le domaine 350-600 nm différentes composantes que le spectre enregistré en cm⁻¹ ne permet pas d'observer (tableau III).

Les bandes révélées par le traitement du spectre à l'ordinateur sont dues en raison des couplages magnétiques à l'excitation de paires d'ions Fe³⁺ par un seul photon. Ce processus observé dans l'étude de différents minéraux par d'autres auteurs (4, 7) peut intervenir à des énergies sensiblement égales, voire inférieures à la somme des énergies correspondantes de l'ion Fe³⁺ (un écart de 1000 à 2000 cm⁻¹ est envisageable).

FIG. 1. Evolution du spectre du fer(III) octaédrique en fonction du taux de substitution dans le système $ZnFe_xGa_{2-x}O_4$ (1, x = 0.05; 2, x = 0.1; 3, x = 0.2; 4, x = 1).

La comparaison des spectres du fer(III) dans l'hématite (4) et dans ZnFeGaO₄ indique que l'existence de couplages antiferromagnétiques intenses entre les ions Fe³⁺ des sites octaédriques entraîne un développement important des transitions de paires ${}^{6}A_{1} + {}^{6}A_{1} \rightarrow {}^{4}T_{1} + {}^{4}T_{1}, {}^{4}T_{1} + {}^{4}T_{2}, ({}^{4}E,$ ${}^{4}A_{1}$) + ${}^{4}T_{1}$ (les massifs observés dans le domaine 20000-40000 cm⁻¹) sur le spectre de αFe_2O_3 comprennent les transitions fondammentales de l'ion Fe³⁺ mais également les deux dernières transitions de paires évoquées, cidessus, mais non explicitement mentionnées par Sherman. Les bandes observées à 34500 cm⁻¹ (x = 0.05) et vers 33000 cm^{-1} (x = 0,2) résultent de la combinaison des transitions ${}^{6}A_{1} \rightarrow {}^{4}T_{1}({}^{4}P)$ (position calculée 33100 cm⁻¹) et ${}^{6}A_{1} + {}^{6}A_{1} \rightarrow$ $({}^{4}E, {}^{4}A_{1}) + {}^{4}T_{2}.$

Pour x = 1, la bande à 39000 cm⁻¹ (4,83 eV) peut être attribuée à la première bande de transfert en accord les données expérimentales (8) et théoriques (5).

Signalons en conclusion de cette étude des propriétés optiques de l'ion Fe^{3+} en environnement octaédrique dans la structure spinelle l'excellent accord entre les résultats expérimentaux (énergie des transitions et valeur des paramètres optiques) et ceux relatifs aux monocristaux Fe^{3+} : Al_2O_3 (tableau IV).

II. Proprietes optiques de l'ion Fe^{3+} en coordination tetraedrique

Les spectres d'absorption et de luminescence de l'ion Fe³⁺ dans un environnement

			Distributi	on ionique	Structure	
Formule		a(nm) u	Td	Oh	à 300 K	Ref.
Système ZnFe _x Ga _{2-x} O ₄ ; $x =$	0	0,837	Zn	Ga2O4	A. 4999888 Balance and a second s	
	0,1		Zn	Fe0.1Ga1.9O4		
	1		Zn	Fe1Ga1O4	Paramagnétique	(1)
	2	0,8416; 0,380	Zn	Fe ₂ O ₄	5 .	
Système MgFe _x Ga _{2-x} O ₄ ; $x =$	0	0,8286; 0,382 0,8279	Mg _{0,33} Ga _{0,67} Mg _{0,3} Ga _{0,7}	Mg _{0,67} Ga _{1,33} O ₄ Mg _{0,7} Ga _{1,3} O ₄		(1) (2)
	0,1	0,8280	$(Mg + Ga)_{0.9}Fe_{0.1}$	(MgGa) ₂ O ₄	Paramagnétique	Cette étude
	0,2	0,8282				(2)
	1	0,8316	$Mg_{0.2}Fe_{0.4}Ga_{0.4}$	Mg0.8Fe0.6Ga0.6O4		(2)
	1,2	0,8329			Ferrimagnétique	(2)
						(2)
	2	0,8363; 0,382	Mg _{0.07} Fe _{0.93}	Mg _{0.93} Fe _{1.07}	Ferrimagnétique	

TABLEAU I

DONNEES CRISTALLOGRAPHIQUES^a

^a Température de Curie: x = 1, $\theta_c \sim -110^{\circ}$ C; x = 1, 2, $\theta_c = 30^{\circ}$ C; x = 2, $\theta_c = 375^{\circ}$ C.

TABLEAU II Interpretation du spectre du fer(III) octaedrique

	Energ	Paramètres (cm ⁻¹)					
Composé	${}^6\!A_1 \rightarrow {}^4T_1({}^4G)$	${}^{4}T_{2}({}^{4}G)$	${}^{4}E, {}^{4}A_{1}({}^{4}G)$	$^{4}E(^{4}D)$	Dq	В	C
x = 0.05	8400	12900	21600	25800	1575	600	3120
0,2	8500	12900	21500	25700	1565	600	3100
1	8500	13000	21300	25800	1540	640	2980

TABLEAU III

MISE EN EVIDENCE DES TRANSITIONS DE PAIRES

	Spectre enregistré		F	• • •		
	(cm ⁻¹)	(nm)	traité		Attribution proposée	
Energie en cm ⁻¹ et position en nm des transitions observées	~17500	571	17500 19900	572 503 ép.	$2({}^{6}A_{1}) \rightarrow 2({}^{4}T_{1}({}^{4}G))$	
			20500	488	$2({}^{6}A_{1}) \rightarrow ({}^{4}T_{1} + {}^{4}T_{2})$	
	21500	465	21600	463	${}^{6}A_{1} \rightarrow {}^{4}E_{1}, {}^{4}A_{1}({}^{4}G)$	
			23250	439 ép.	${}^{6}A_{1} \rightarrow {}^{4}T_{2}({}^{4}D)^{a}$	
	25700	389	25650	390	${}^{6}A_{1} \rightarrow {}^{4}E({}^{4}D)$	
	~28500		28500	351	$2({}^{6}A_{1}) \rightarrow ({}^{4}E_{1}, {}^{4}A_{1}) + {}^{4}T_{1}$	

^a Énergie calculée.

Niveau	Fe^{3+} : Al_2O_3	Fe ³⁺ : MgO	αFe	$_{2}O_{3}$	γFe_2O_3	Nontronite
$\frac{1}{4T_{1}(^{4}G)}$	9.45	10.0	11.6	11,3	10,7	10.6
${}^{4}T_{2}({}^{4}G)$	14.35	13.5		15,4	15	16.1
${}^{4}E, {}^{4}A_{1}({}^{4}G)$	22.27	21.74	23.8	22,5	23	22.5
${}^{4}T_{2}({}^{4}D)$	25.51	25.12		24,7	_	26.0
${}^{4}E({}^{4}D)$	26.8	27.5	26.7	26,3	27	27.2
${}^{4}T_{1}({}^{4}P)$	32.5	30.97	31.8	31,3	31,7	_
${}^{4}A_{2}({}^{4}F)$	-	-				—
${}^{6}t^{\beta}_{1\mu} \rightarrow {}^{2}t^{\beta}_{2\mu}$	38.6	35.8	38.9	37,0	40	38.2
${}^{1}t_{2u}^{\beta} \rightarrow {}^{2}t_{2g}$	_	40.5	44.8(?)			—
${}^{6}t^{\beta}_{1\mu} \rightarrow {}^{4}e^{\beta}_{a}$	51.5	46.2	_		_	50.0
10 Da ^a	15.27	13.4	15.9	14.0	15,41	14.2
Ba	0.65	0.48	0.41	0,54	0,56	0.67
C^a	3.16	3.38	3.93	3,41	3,51	3.12
Référence	(7, 9, 10)	(11, 12)	(13)	(4)	(4)	(14)

TABLEAU IV

DONNEES BIBLIOGRAPHIQUES RELATIVES AU SPECTRE DU FER(III) OCTAEDRIQUE

 $a 10^3 \text{ cm}^{-1}$.

tétraédrique d'oxygène ont été très étudiés. Cependant il semble que de nombreuses interprétations parmi les premiers travaux soient sujettes à caution (15, 16); aussi avons nous limité la bibliographie aux publications les plus récentes (tableau V). tétraédrique ($x \le 0,1$) et le spectre d'absorption de composés où le fer se trouve dans les deux environnements (x = 1,2: $[Fe^{3+}]_{tetra} = 0,45$; $[Fe^{3+}]_{octa} = 0,75$).

Les figures 2a et 2b présentent le spectre d'absorption caractéristique d'un ion Fe³⁺ coordiné tétraédriquement (précisions qu'une fraction minoritaire du fer(III) dans

Nous avons retenu le système $MgGa_{2-x}$ Fe_xO₄ pour étudier le spectre de fer(III)

Composé			Energies o	Bande de	Paramètres (cm ⁻¹)							
	⁶ A ₁ -	→ ⁴ T ₂	${}^{4}E, {}^{4}A_{1}$	${}^{4}T_{2}({}^{4}D)$	${}^{4}E({}^{4}D)$	${}^{4}T_{1}({}^{4}P)$	de charge	ge Dq B	С	Ref.		
MgFe _{0,1} Ga _{1,9} O ₄		^a 18200 ^b 18200 c	19200 19400	21300 21150	22200 22300 (23200)	~25800 25850	30300 (33000)	39000-40000	890	670	2900	d
Fe ³⁺ : LiAl5O8	${}^{6}A_{1} \rightarrow {}^{4}T_{1}$ 15255° 15130 ^f 15748		18695 18830 19080	21300 21110	22550 22650 22222	25720 25520 25510	34150 ~30000		800 800 770	605	3046	(17) (17) (19)

TABLEAU V nterpretation du spectre du fer(III) tetraedrique

^a Spectre enregistré.

^b Spectre traité à l'ordinateur.

^c Valeur calculée.

^d Cette étude.

e Forme ordonnée.

^f Forme désordonnée d'aprés référence (17).

FIG. 2. Spectre du fer(III) tétraédrique dans Mg $Fe_{0,1}Ga_{1,9}O_4$ (a) et dans $MgFe_{0,2}Ga_{1,8}O_4$ (b).

le composé MgFe_{0,2}Ga_{1.8}O₄ occupe les sites octaédriques). Les spectres traités à l'ordinateur (fig. 3a et 3b) mettent en évidence dans le domaine 600–380 nm (16000–26500 cm⁻¹), les transitions fondamentales qui s'avèrent être en bon accord avec les données expérimentales de la bibliographie. La bande à 330 nm (30300 cm⁻¹) également observée par Pott et McNicol (17) à 77 K sur le spectre d'excitation de monocristaux Fe³⁺: LiAl₅O₈ désordonnés pourrait correspondre à la transition ${}^{6}A_{1} \rightarrow {}^{4}T_{1}(P)$ que le calcul situe à 33000 cm⁻¹ ou à 32500 cm⁻¹ dans l'orthoclase (18).

Enfin, le spectre du composé MgFe_{0,2} Ga_{1.8}O₄ présente à 27500 cm⁻¹ et à 29000

FIG. 3. Mise en évidence des composantes du spectre dans le domaine 380-600 nm par traitement à l'ordinateur (courbe 1, spectre enregistré; courbe 2, spectre traité). $MgFe_{0,1}Ga_{1,9}O_4$ (a); $MgFe_{0,2}Ga_{1,8}O_4$ (b).

cm⁻¹ deux composantes non identifiées. Nous estimons que la première pourrait être la transition ${}^{6}A_{1} \rightarrow {}^{4}E({}^{4}D)$ de l'ion Fe³⁺ octatédrique (le spectre en nombre d'ondes met en évidence à 9200 cm⁻¹ la transition ${}^{6}A_{1} \rightarrow {}^{4}T_{1}({}^{4}G)$ de cette espèce. La seconde correspond à la transition de paires ${}^{6}A_{1} + {}^{6}A_{1} \rightarrow ({}^{4}E, {}^{4}A_{1}^{1}) + {}^{4}T_{1}(G)$.

III. Conclusion

Le tableau VI présente les données les plus actuelles sur les plans cristallographique (étude EXAFS: Refs. (20, 21)) et optique de différents systèmes spécifiques des deux coordinations octaédrique et tétraédrique de l'ion Fe³⁺. L'accord remarquable entre les données expérimentales et celles issues des modèles théoriques de Sherman (5) justifie pleinement les attributions retenues.

Nous achèverons cette première étude des propriétés optiques du fer(III) dans les spinelles du type 3-2, en signalant que contrairement aux conclusions de Sherman et Waite (4) relatives à la maghemite (γ Fe₂O₃), l'étude des propriétés optiques de composés tels MgFeGaO₄ (figure 4) permet de mettre en évidence les deux en-

FIG. 4. Mise en évidence de l'influence des couplages ferrimagnétiques sur les transitions de paires de fer(III) octaédrique (1, MgFe_{1,2}Ga_{0,8}O₄; 2, ZnFeGaO₄).

					Energie	s des transi	tions (kk	0		Рага	nètres ((kK)
Systèmes	$\begin{array}{c} R_1 \text{ ou } d_B \\ (\text{\AA}) \end{array}$	CN_1	Méthode	${}^{6}A_1 \rightarrow {}^{4}T_1$	⁴ T ₂	$({}^{4}E, {}^{4}A_{1})$	$^{4}T_{2}(D)$	⁴ E(D)	$\frac{LMCT}{(^{6}t^{\beta}_{1u}} -$	$10 Dq$ $2t^{\beta}_{2g})$	B	с
LiFeO ₂ Lia :Feo :Mg: 80	2,014 2,029	5,65 6,05	EXAFS EXAFS	9,2	14	20			38	13,1	0,58	2,85
Fe ³⁺ Oh, Fe ³⁺ : MgO	2,01	,	EXAFS	10	13,3	21.7		27,5		13,4	0,48	3,38
$ZnFe_xGa_{2-x}O_4$ cluster	~2,05		Diffraction \times	8,5	12,9	21,5		25,7	39-40	15,65	0,60	3,1
(FeO ₆) ⁹⁻	2,05			11,1				25,4	38,1	15,8	0,64 (C/B	-0,73 = 4,7)
	$\begin{array}{c} R_1 \text{ ou } d_A \\ (\text{\AA}) \end{array}$								$({}^{1}t_{1}^{\beta}-$	• ² e ^β)		
Fe ³⁺ : yLilO ₂	1,871	4,2	EXAFS	14,5-16,3	18,5-19,6	21,6	22,3	25,6		8,35	0,57	3,18
Fe ³ Td, MgFe _x Ga _{2-x} O ₄ cluster	1,89		Diffraction \times		18,2-19,4	21,15	22,3	25,85	39-40	8,9	0,67	2,9
(FeO ₄) ⁵⁻	1,865			16,2		23	5	26	40,4	8,23	0,58	-0,62

INDLLNU VI	TA	BLE	AU	VI
------------	----	-----	----	----

CORRELATION ENTRE DONNEES EXAFS ET PARAMETRES OPTIQUES

vironnements de l'ion Fe³⁺ (l'existence de couplages ferrimagnétiques accroît l'intensité des transitions de paires $({}^{6}A_{1} + {}^{6}A_{1}) \rightarrow ({}^{4}T_{1} + {}^{4}T_{1})$ et $({}^{4}E, {}^{4}A_{1}) + {}^{4}T_{1}(G)$.

References

- 1. LANDOLT-BORNSTEN, "Groupe III: Crystal and Solid State Physics," Vol. 4, Part b, Springer-Verlag, New York/Berlin (1970).
- 2. J. C. TELLIER, Thèse de doctorat d'état, Paris (1966).
- 3. D. M. SHERMAN ET R. G. BURNS, J. Geophys. Res. 87, 169 (1982).
- 4. D. M. SHERMAN ET T. O. WAITE, Amer. Mineral. 70, 1262 (1985).
- 5. D. M. SHERMAN, Phys. Chem. Mineral. 12, 161 (1985).
- C. K. JORGENSEN, "Oxidation Numbers and Oxidation States," Springer-Verlag, Berlin/Heidelberg (1969) (a) ET D. REINEN, Struct. Bonding 6, 30 (1969) (b).
- 7. J. FERGUSON ET P. E. FIELDING, Aust. J. Chem. 25, 1371 (1972).
- 8. H. TIPPINS, Phys. Rev. B 1, 126 (1970).

- 9. J. J. KREBS ET W. G. MAISCH, *Phys. Rev. B* 4, 75 (1971).
- G. LEHMAN ET H. HARDER, Amer. Mineral. 55, 98 (1970).
- 11. J. C. CHENG ET J. C. KEMP, *Phys. Rev. B* 4, 2841 (1971).
- 12. K. W. BLAZY, J. Phys. Chem. Solids 38, 671 (1977).
- 13. L. A. MARUSAK, R. MESSIER, ET W. B. WHITE, J. Phys. Chem. Solids 41, 981 (1980).
- 14. S. W. KARICKHOFF ET G. W. BAILEY, Clays Clay Miner. 21, 59 (1973).
- 15. N. T. MELAMED, F. DE SOUZA BARROS, P. J. VICCARO, ET J. O. ARTMAN, *Phys. Rev. B.* 5, 3377 (1972).
- 16. J. M. NETO, T. ABRITTA, F. DE S. BARROS, ET N. T. MELAMED, J. Lumin. 22, 109 (1981).
- G. T. POTT ET B. D. MCNICOL, J. Chem. Phys. 56, 5646 (1972).
- W. B. WHITE, M. MATSUMURA, D. B. LINNE-HAM, T. FURUKAWA, ET B. K. CHANDRASEKHAR, Amer. Mineral. 71, 1415 (1986).
- 19. T. ABRITTA ET F. DE SOUZA BARROS, J. Lumin. 40/41, 187 (1988).
- 20. G. A. WAYCHUNAS, G. E. BROWN, ET M. J. APTED, *Phys. Chem. Mineral.* 13, 31 (1986).
- 21. G. A. WAYCHUNAS, J. Mater. Sci. 18, 212 (1983).